
By Arthur J. Lyon and W. Ashhurst (Auth.)
Read or Download Dealing with Data PDF
Best data modeling & design books
Designing Database Applications with Objects and Rules: The Idea Methodology
Is helping you grasp the most recent advances in sleek database know-how with thought, a cutting-edge technique for constructing, holding, and utilizing database platforms. comprises case experiences and examples.
Ziel dieser Arbeit ist die Entwicklung und Darstellung eines umfassenden Konzeptes zur optimalen Gestaltung von Informationen. Ausgangspunkt ist die steigende Diskrepanz zwischen der biologisch begrenzten Kapazität der menschlichen Informationsverarbeitung und einem ständig steigenden Informationsangebot.
Physically-Based Modeling for Computer Graphics. A Structured Approach
Physically-Based Modeling for special effects: A established process addresses the problem of designing and handling the complexity of physically-based types. This publication should be of curiosity to researchers, special effects practitioners, mathematicians, engineers, animators, software program builders and people attracted to laptop implementation and simulation of mathematical types.
Practical Parallel Programming
This can be the booklet that would train programmers to write down quicker, extra effective code for parallel processors. The reader is brought to an enormous array of methods and paradigms on which real coding should be dependent. Examples and real-life simulations utilizing those units are provided in C and FORTRAN.
- Java and JMX: Building Manageable Systems
- Databases, Information Systems, and Peer-to-Peer Computing
- Privacy in Statistical Databases: UNESCO Chair in Data Privacy International Conference, PSD 2010 Corfu, Greece, September 22-24, 2010 Proceedings
- Principles of database systems
- Scientific Data Analysis: An Introduction to Overdetermined Systems
Additional resources for Dealing with Data
Sample text
1) 2 1 % . (m) No. (n) 7 | % . 6. (a) 5. (b) 0-5. (c) 0-05. (d) 0-5. (e) No. (f) No. (g) 1*5. 7. (a) 40-0+1-2. (b) 400+24 (6%). (c) 0-0500 + 0-0015 (3%). (d) 2-00+0-03(11%). (e) 300+0-6. (f) 00333 + 00007 (2%). (g) 100+0-6. (h) 0-100+0-006 (6%). (i) 1000+180 (18%). 8. (a) 13 %. (b) No. (c) 23 %. (d) No. (e) 24 %. (f) 10 %. (g) 2 %. (h) No. 9. (a) 20 + 3. (b) 120 + 0-7. (c)0-40+0-06. (d) 3-0+0-4. (e) 7Ό+0-9. (f)(2-0+0-4)Xl0 2 . (g)2-4 + 0-6. (h)2-0 + 0-2. (i)26 + 2. (j) 104+11. 10. (a) 54-37+0-048.
M = 16-513 g (with maximum error ±0-05). It will be noted that we have retained two decimal places beyond the final place of the less-accurate term. In other words, we have retained two guarding decimal places. Suppose that we have a larger number of terms, in fact a "generalized sum" of the form ±x±y±z±, .. ,in which there is considerable variation in the number of decimal places quoted. 4 that when all the values are correct to their last decimal place retention of two guarding places is still desirable, and in most cases adequate.
A) 40-0+1-2. (b) 400+24 (6%). (c) 0-0500 + 0-0015 (3%). (d) 2-00+0-03(11%). (e) 300+0-6. (f) 00333 + 00007 (2%). (g) 100+0-6. (h) 0-100+0-006 (6%). (i) 1000+180 (18%). 8. (a) 13 %. (b) No. (c) 23 %. (d) No. (e) 24 %. (f) 10 %. (g) 2 %. (h) No. 9. (a) 20 + 3. (b) 120 + 0-7. (c)0-40+0-06. (d) 3-0+0-4. (e) 7Ό+0-9. (f)(2-0+0-4)Xl0 2 . (g)2-4 + 0-6. (h)2-0 + 0-2. (i)26 + 2. (j) 104+11. 10. (a) 54-37+0-048. (b) 0-05638+ 0-0006. (c) 2-74 + 0-15. (d) (1-572 + + 0·052)Χ104. (e) (3-83±0-27)Xl0- 4 . (f) 7-82+0-074.